Spirillum swimming: theory and observations of propulsion by the flagellar bundle.

نویسندگان

  • H Winet
  • S R Keller
چکیده

The hydrodynamics and energetics of helical swimming by the bacterium Spirillum sp. is analysed using observations from medium speed cine photomicrography and theory. The photographic records show that the swimming organism's flagellar bundles beat in a helical fashion just as other bacterial flagella do. The data are analysed according to the rotational resistive theory of Chwang & Wu (1971) in a simple-to-use parametric form with the viscous coefficients Cs and Cn calculated according to the method of Lighthill (1975). Results of the analysis show that Spirillum dissipated biochemical energy in performing work against fluid resistance to motion at an average rate of about 6 X 10(-8) dyne cm s-1 with some 62-72% of the power dissipation due to the non-contractile body. These relationships yield a relatively low hydromechanical efficiency which is reflected in swimming speeds much smaller than a representative eukaryote. In addition the Cn/Cs ratio for the body is shown to lie in the range 0-86-1-51 and that for the flagellar bundle in the range 1-46-1-63. The implications of the power calculations for the Berg & Anderson (1973) rotating shaft model are discussed and it is shown that a rotational resistive theory analysis predicts a 5-cross bridge M ring for each flagellum of Spirillum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Swimming of Unipolar Cells of Spirillum Volutans: Theory and Observations

Bright-field high-speed cinemicrography was employed to record the swimming of six unipolar cells of Spirillum volutans. A complete set of geometrical parameters for each of these six cells, which are of typical but varying dimensions, was measured experimentally. For each cell, the mean swimming linear and angular speeds were measured for a period representing an exact number of flagellar cycl...

متن کامل

Electron microscopic observations of structures associated with the flagella of Spirillum volutans.

Electron microscopy of thin-sectioned Spirillum volutans (ATCC 19554) showed that at the insertion site of the flagellum there was a cylindrical structure with a diameter of ca. 36 nm which extended ca. 19 nm into the cytoplasm. This structure, termed a cytoplasmic flagellar base, enclosed a central rod which was continuous with the hook. There was a continuation of the flagellar base into the ...

متن کامل

Opposite and Coordinated Rotation of Amphitrichous Flagella Governs Oriented Swimming and Reversals in a Magnetotactic Spirillum.

UNLABELLED Current knowledge regarding the mechanism that governs flagellar motor rotation in response to environmental stimuli stems mainly from the study of monotrichous and peritrichous bacteria. Little is known about how two polar flagella, one at each cell pole of the so-called amphitrichous bacterium, are coordinated to steer the swimming. Here we fluorescently labeled the flagella of Mag...

متن کامل

Polar features in the flagellar propulsion of E. coli bacteria.

E. coli bacteria swim following a run and tumble pattern. In the run state all flagella join in a single helical bundle that propels the cell body along approximately straight paths. When one or more flagellar motors reverse direction the bundle unwinds and the cell randomizes its orientation. This basic picture represents an idealization of a much more complex dynamical problem. Although it ha...

متن کامل

Inhibitio of flagellar coordination in Spirillum volutans.

The motility of Spirillum volutans is caused by the rotation of each polar flagellar fascicle in a direction opposite to that of the more slowly rotating cell. Both flagella form cones of revolution oriented in the same direction. When the cell reverses its motion, both fascicles simultaneously reverse their rotation and also the orientation of their cones of revolution, with the tail fascicle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 65 3  شماره 

صفحات  -

تاریخ انتشار 1976